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1. What is Diffusion? 

Diffusion is one of several “transport processes” that occur in nature.  A distinguishing 
feature of diffusion is that it results in mixing or mass transport without requiring bulk motion.  
Thus, diffusion should not be confused with convection or dispersion, which are other transport 
mechanisms that use bulk motion to move particles from one place to another.  
 
2. Gedanken Experiment 

Paul Berg’s book “Random Walks in Biology” (1), describes a useful thought experiment 
that illustrates the diffusion phenomenon.  Imagine carefully introducing a drop of colored 
fluorescent dye into a jar of water. Initially, the dye remains concentrated at the point of release, 
but over time, it spreads radially, in a spherically symmetric distribution.  This mixing process is 
taking place without stirring or other “convective” processes.   
 
3. Underlying Physical Process 

This diffusive mixing results solely from collisions between molecules in liquids and gases. 
Another interesting feature of diffusion is that it occurs even in thermodynamic equilibrium.  For 
example, it can occur in a jar of water kept at a constant temperature and pressure.  This is quite 
remarkable, because the classical picture of diffusion, expressed in Fick’s First Law (2,3) was 
that, particles, like heat, flow from regions of high concentration to low concentation.  When 
these gradients vanished, however, there was no net flux. There were many who held that 
diffusion stopped at this point.  While the net flux vanishes, however, there are still diffusive 
fluxes nonetheless, however they cancel each other.  

 
4. Brownian Motion 

Robert Brown is credited with being the first one to discover random motions of pollen 
grains while studying them through his microscope (4).  It wasn’t until Einstein revisited this 
phenomenon in the early 20th century that a coherent description of diffusion emerged, 
identifying the diffusion coefficient in Fick’s law and the variance of the particle displacement 
distribution that describes the migration of particles in “Brownian motion”.   

 
5. Einstein’s insights into the diffusion process 

Einstein was able to derive an explicit relationship between the mean-squared displacement 
of a particle and the classical diffusion coefficient (5,6). Langevin improved Einstein’s 
description of diffusion for ultra-short timescales in which there are few molecular collisions. 
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Since collision times in typical solvents like water are about 0.1 nanoseconds, we generally do 
not concern ourselves with this correction in NMR experiments.   

 
6. Edwin Hahn 

Hahn realized that the spin echoes he discovered were sensitive to the effects of diffusion.  
He reported the reduction of signal of the spin echo and explained it in terms of the dephasing 
caused by translational diffusion of spins subjected to local magnetic field gradients due to 
inhomogenities in the magnetic field (7).  

 
7. Carr and Purcell 

Carr and Purcell (8), building on the observations of Hahn, showed that NMR spin echoes 
could be sensitized to diffusion in a way that permits its direct measurement.  They proposed 
using a Hahn spin echo experiment in which constant gradients were applied throughout the 
pulse sequence.  During the first period (between the 90º and 180º pulses), molecules would 
dephase at different rates depending on the instantaneous position within the gradient field, 
acquiring some net phase.  During the second period (between the 180º pulse and the echo) spins 
would refocus at different rates depending on their position in the gradient field.  If particles 
were stationary or moving at the same constant speed, the echo magnitude would be unchanged 
in this experiment.  However, if particles were diffusing throughout the experiment, the phase 
increment gained during the first period would not generally cancel the phase accrued during the 
second period, resulting in phase dispersion among the population of spins and an overall loss of 
signal intensity, which was ascribed directly to diffusion. Carr and Purcell proposed NMR 
sequences to sensitize the NMR spin echo to the effects of diffusion, and developed a 
mathematical framework to measure the diffusion coefficient from such sequences.  

 
8. Stejskal and Tanner 

Stejskal and Tanner (9) introduced many innovations that made modern diffusion 
measurements by NMR and MRI possible.  First, they introduced the Pulsed Gradient Spin Echo 
(PGSE) sequence, which replaced Carr and Purcell’s constant gradients with short duration 
gradient pulses.  This allowed a clear distinction between the encoding time (pulse duration) and 
the diffusion time.  They also provided a solution to the Bloch-Torrey equations that included 
diffusion as a relaxation process (10), specifically showing how the magnitude and phase of the 
NMR signal is related to diffusivity. Stejskal and Tanner also solved the Bloch-Torrey equation 
(9) for the case of free, anisotropic diffusion in the principal frame of reference. However, the 
Stejskal –Tanner formula is not generally useable to measure an effective diffusion tensor using 
NMR or MRI methods for several reasons: First, this formula relates a time-dependent diffusion 
tensor, to the NMR signal, so one must define a relationship between the time-dependent 
diffusion tensor and an effective diffusion tensor. Second, in the pre-MRI era (in which the 
Stejskal-Tanner formula was derived) it was always tacitly assumed that a homogeneous 
anisotropic sample could be physically reoriented within the magnet so that its principal axes 
could be aligned with the axes of the laboratory coordinate frame.  After the development of 
MRI, however, this assumption was no longer tenable. Materials under study (like tissue) were 
often heterogeneous optically turbid media whose principal axes were generally not known a 
priori and could vary from region to region within the sample.  Thus, a general scheme had to be 
developed to measure the entire diffusion tensor (both its diagonal and off-diagonal elements) in 
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each voxel within the laboratory frame of reference (11).  Stejskal and Tanner also proposed a 
general Fourier relationship for the PGSE experiment between the measured signal and the 
displacement distribution, which laid the foundation for subsequent developments of q-space 
NMR and MRI (12,13).  

 
9. What is Diffusion Anisotropy? 

 In tissues, such as brain gray matter, where the measured apparent diffusivity is largely 
independent of the orientation of the tissue (i.e. isotropic) at the voxel length scale; it is usually 
sufficient to describe the diffusion characteristics with a single (scalar) apparent diffusion 
coefficient (ADC). However, in anisotropic media, such as skeletal and cardiac muscle (14) (15), 
(16) and in white matter (17) (18) (19) where the measured diffusivity is known to depend upon 
the orientation of the tissue, a single ADC can not characterize the orientation-dependent water 
mobility.  The next most complex model that can describe anisotropic diffusion replaces the 
scalar diffusion coefficient with a symmetric effective or apparent diffusion tensor of water, D 
(e.g., see (20)). 
 

10.  What Causes Diffusion Anisotropy in Tissues? 

 The causes of diffusion anisotropy have not been fully elucidated in brain parenchyma, 
although most investigators ascribe it to ordered, heterogeneous structures, such as large oriented 
extracellular and intracellular macromolecules, supermacromolecular structures, organelles, and 
membranes. Clearly, in the central nervous system (CNS), diffusion anisotropy is not simply 
caused by myelin in white matter, since several studies have shown that even before myelin is 
deposited, diffusion anisotropy can be measured using MRI (21) (22-24). Thus, despite the fact 
that increases in myelin are temporally correlated with increases in diffusion anisotropy, 
structures other than the myelin sheath must significantly contribute to diffusion anisotropy (25).  
This is important because the degree of diffusion anisotropy is not a quantitative measure or 
“stain” of myelin content (26). 
 
11.  Concluding Remarks: 

 As water (or another spin-labeled molecule) undergoes diffusion, it also encounters barriers, 
macromolecules, sampling many different local environments.  Collectively, the signal we 
measure in an NMR experiment contains contributions from water motion in these various 
microenvironments.  The challenge in diffusion NMR and MRI is to try to back off or infer 
features of the local tissue anatomy, composition and microstructure from displacement 
measurements.  One great advantage of MR is that it permits one to probe tissue structure at 
different length scales—i.e., levels of architectural organization.  Specifically, while the mean-
squared displacement of water is on the order of microns for typical MR experiments, these 
molecular motions are ensemble-averaged within a voxel, and then subsequently assembled into 
multi-slice or 3-D images of tissues and organs.  Thus, this imaging modality permits us to study 
and elucidate complex structural features spanning length scales ranging from the 
macromolecular to the macroscopic – without the use of exogenous contrast agents. 
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